215 research outputs found

    Towards a Formal Verification Methodology for Collective Robotic Systems

    Get PDF
    We introduce a UML-based notation for graphically modeling systems’ security aspects in a simple and intuitive way and a model-driven process that transforms graphical specifications of access control policies in XACML. These XACML policies are then translated in FACPL, a policy language with a formal semantics, and the resulting policies are evaluated by means of a Java-based software tool

    Measurement report: Receptor modeling for source identification of urban fine and coarse particulate matter using hourly elemental composition

    Get PDF
    The elemental composition of the fine (PM2.5) and coarse (PM2.5−10) fraction of atmospheric particulate matter was measured at an hourly time resolution by the use of a streaker sampler during a winter period at a Central European urban background site in Warsaw, Poland. A combination of multivariate (Positive Matrix Factorization) and wind- (Conditional Probability Function) and trajectory-based (Cluster Analysis) receptor models was applied for source apportionment. It allowed for the identification of five similar sources in both fractions, including sulfates, soil dust, road salt, and traffic- and industry-related sources. Another two sources, i.e., Cl-rich and wood and coal combustion, were solely identified in the fine fraction. In the fine fraction, aged sulfate aerosol related to emissions from domestic solid fuel combustion in the outskirts of the city was the largest contributing source to fine elemental mass (44 %), while traffic-related sources, including soil dust mixed with road dust, road dust, and traffic emissions, had the biggest contribution to the coarse elemental mass (together accounting for 83 %). Regional transport of aged aerosols and more local impact of the rest of the identified sources played a crucial role in aerosol formation over the city. In addition, two intensive Saharan dust outbreaks were registered on 18 February and 8 March 2016. Both episodes were characterized by the long-range transport of dust at 1500 and 3000 m over Warsaw and the concentrations of the soil component being 7 (up to 3.5 µg m−3) and 6 (up to 6.1 µg m−3) times higher than the mean concentrations observed during non-episodes days (0.5 and 1.1 µg m−3) in the fine and coarse fractions, respectively. The set of receptor models applied to the high time resolution data allowed us to follow, in detail, the daily evolution of the aerosol elemental composition and to identify distinct sources contributing to the concentrations of the different PM fractions, and it revealed the multi-faceted nature of some elements with diverse origins in the fine and coarse fractions. The hourly resolution of meteorological conditions and air mass back trajectories allowed us to follow the transport pathways of the aerosol as well.</p

    High time-resolved multi-wavelength measurements of light absorption properties of atmospheric aerosol using a polar photometer

    Get PDF
    Black Carbon (BC) is the main absorber of solar radiation among the aerosol components, it influences cloud processes, and alters the melting of snow and ice cover. On global scale, it is currently identified as the second most important individual climate-warming component after CO2, but uncertainties on the radiative forcing related to BC-radiation interaction still cover more than one order of magnitude. Moreover, weakly absorbing organic material (brown carbon, BrC) in the form of particle coating or as particle as-is can be considered a further important contributor to aerosol absorption. The peculiarity of BrC is that it is very effective in the absorption of short-\u3bb radiation whereas its contribution to aerosol absorption is negligible in the red or near-IR bands. It is noteworthy that BC and BrC can also be used for source apportionment purposes (e.g. they can be helpful for the discrimination between fossil fuels combustion vs. biomass burning). Thus, work is currently ongoing to develop instrumentation able to give more and more detailed information on the absorption properties of atmospheric aerosol, possibly related to mixing and/or size information, and BC content. Moving in this frame, a multi-\u3bb polar photometer (PP_UniMI) has been developed at the Department of Physics of the University of Milan in the last years. The instrument is based on the measurement on the scattering plane of the light transmitted and scattered in the forward and back hemispheres by unloaded and loaded samples using a rotating photodiode. Data reduction aiming at the determination of the sample absorbance follows Petzold et al. (2004) and therein cited literature. In its original version (see details in Vecchi et al., 2013) the PP_UniMI allowed measuring aerosol deposited on 47 mm diameter filters at a single wavelength (\u3bb), then further upgraded to 4-\u3bb (870, 633, 532, 405 nm). In this work, we improved PP_UniMI to provide the absorption properties of the aerosol collected with high-time resolution using a streaker sampler. Such sampler collects aerosol segregated in two size-classes (fine and coarse) on a rotating frame with hourly resolution. The deposit corresponding to 1-hour sampling is collected on 1x8 mm2 streaks. To analyse such deposits, suitable pairs of lenses were used to reduce the spot-size down to about 1 mm diameter (see Figure 1). A 1-mm diameter pinhole was added to the set-up in order to ensure that the spot was small enough to allow the single-streak measurement. It is noteworthy that some laser sources are placed at 90\ub0 respect to the incident direction on the filter, thus mirrors are present in the set-up. The new set-up or the instrument was validated against independent measurements carried out using a Multi-Angle Absorption Photometer for what concerns the red-light results. The results presented here will include the validation of the instrumentation and the results of one-week winter campaign. Data reduction will aim at evidencing high time-resolved trends of multi-wavelength aerosol absorption. This is important both for gaining insight into aerosol absorption properties (still poorly known) and for source identification purposes

    Nuclear techniques and the particulate matter pollution in big harbours

    Get PDF
    The impact of big harbours on the air quality is an important issue both from the environmental and the economical point of view. The harbour of Genoa is the largest in Italy and one of the major ports of the Mediterranean. We have determined the fraction of Particulate Matter (PM) concentration in town due to the heavy oil combustion of the diesel engines of the vessels in the harbour. This turned out to be 12% in PM10 and 25% in PM2.5 and PM1, with about 85% of the PM from this source concentrated in particles with aerodynamic diameter, Dae < 1 μm. We could also point out a link between concentration peaks of the tracers of heavy oil combustion (V and Ni) and the ferryboats traffic. The key tool in this work was the coupling between particular sampling devices and some Ion Beam Analysis (IBA) techniques, in particular Particle Induced X-ray Emission (PIXE), which belong to the broader category of nuclear techniques in applied physics

    PM10 source apportionment based on PMF and chemical tracers during different cruises in Western Mediterranean

    Get PDF
    In the Western Mediterranean Basin, frequently exposed to high levels of air pollutants, an important source of pollution which influence the emission, is the intensive ship traffic. The Joint Research Centre of the European Commission (JRC, EC) has started a long-term monitoring program along different years over the Mediterranean Sea based on observations from a cruise ship following a regular route in the Western Mediterranean, in collaboration with the Department of Physics of University of Genoa. In this framework, an intensive PM10 sampling campaign was organized in the summer of 2011, in order to fill in the gap of data recovered (in term of PM speciation) during the previous campaigns (Schembari et al., 2014) and to get a better and complete description of PM sources. During this campaign the route of the ship was Civitavecchia-Savona-Barcelona-Palma de Mallorca- Malta (Valletta)-Palermo-Civitavecchia (see Figure 1). The PM samples were collected on Quartz and Teflon filters (47mm diameter, flow rate 2.3 m3/h) using in parallel two Sven Leckel Ingenieurburo sequential samplers, placed on the top of the cabin where the monitoring and meteorological station was located. Samples were analyzed with different techniques: Energy Dispersive X-Ray Fluorescence at the Department of Physics of Genoa (Ariola et al, 2006); Ion Chromatography (Chow and Watson, 1999) at Department of Chemistry of University of Milan; Thermo-optical analysis (Birch and Cary, 1996) at the JRC laboratory. Ion Beam Analysis measurements of the Teflon filters sampled during the week of September 2011, using simultaneously PIXE, EBS and PESA techniques (Chiari, 2005), were performed at the 3 MV Tandetron accelerator of the LABEC laboratory of INFN in Florence. The data were used to identify and characterize the main PM10 sources along the ship route, with a focus on ship emissions, through apportionment Positive Matrix Factorization receptor modelling, PMF (Paatero et al, 1994). Particular attention was given to the evidence of emissions from heavy fuel oil combustion by ships, known to be an important source of secondary sulphate aerosol. Five sources of aerosol were resolved by the PMF analysis with a new database. The analysis allows distinguishing between secondary and primary particle mass resulting from ship emissions: V and Ni were found to be suitable tracers of heavy fuel oil combustion source during the campaign. The source having the largest impact on PM10 was identified as Sulphate source by PMF. The correlations between Sulphate and V and Ni showed the influence of ship emissions on sulphate in marine air masses
    corecore